Environmental Sustainability Metrics

Learning Objectives

- Understand how agricultural supply chain groups are driving development and adoption of sustainability metrics
- Summarize eight metrics of environmental sustainability that are measured using common frameworks.

Interpreting Market Signals

Chapter 1

Consumers are Driving the Sustainability Movement

- Disconnected from farm
- Bombarded by information
- Concerned about agriculture's impacts on the environment
- Need for transparency, accountability and action
- Supply chain is listening

Agricultural Supply Chain

Ag Input Providers

Growers

Ingredient Processors

Consumer Brands and Retail

Field to Market: The Alliance for Sustainable Agriculture

• Field to Market uniquely brings together stakeholders from across the agricultural supply chain and creates unparalleled opportunities for collaboration.

Credibility

Leading universities and conservation groups are actively engaged in Field to Market's science-based approach to identify opportunities to improve the environmental performance of U.S. food, feed, fiber and fuel production.

Harmonization

Utilizing a multi-stakeholder approach to build consensus, Field to Market creates clear agreed upon terms and definitions and develops metrics and benchmarks that can be universally adopted by all stakeholders.

Efficiency

By providing a common framework to measure the sustainability of U.S. commodity crop production, Field to Market minimizes duplication of efforts and reduces the supplier burden of responding to a proliferation of supply chain surveys.

Uniting the Supply Chain to Deliver Sustainable Outcomes for Agriculture

- Working with 15 suppliers to reduce fertilizer loss and improve yields on 76 million acres by 2025
- Project Gigaton: establish nutrient management goals that reduce greenhouse gases at farm level
- Founder-member of Midwest Row Crop
 Collaborative -support projects that improve soil health and water quality
 - Cover crops
 - Conservation tillage
 - Science-based nutrient management

- Reducing greenhouse gas emission
- Conserving water
- Member of Midwest Row Crop Collaborative
- Tackling row crop impacts on hypoxic dead zone in Gulf of Mexico

https://corporate.mcdonalds.com/corpmcd/scale-for-good/our-planet.html

- Conserving natural resources
- Reducing energy use
- Reducing water use
- Lowering greenhouse gas emissions
- Member of Midwest Row Crop Collaborative
- Ground-water quality in Upper Mississippi River Basin

https://www.kelloggs.com/en US/who-we-are/environmental-initatives.html

- Tracking and reducing greenhouse gas emissions and water use in supply chain
 - Water stewardship program
 - Ecosystem commitments
 - Sustainable sourcing
- Working with local agronomists and farmers to:
 - Boost soil health
 - Sequester carbon
 - Reduce greenhouse gas emissions
- Founder-member of Midwest Row Crop Collaborative

https://www.generalmills.com/en/Responsibility/Overview

- Reduce supply chain impacts:
 - Improve water use efficiency by 15% by 2025
 - Reduce greenhouse gas emission by 20% by 2030
- Sustainable Farming Initiative sustainably source
 - Direct ag raw materials by 2020
 - Non-direct ag raw materials by 2025
- Member of Midwest Row Crop Collaborative

https://www.pepsico.com/sustainability/performance-with-purpose/planet

Connect to supply chain sustainability projects

- Expand business for yourself and growers
- Conserve natural resources for future generations
- Offer sustainability insights to growers
 - Determine baseline values
 - Recommend and implement changes
 - Measure and document
 - Make continuous improvement

Discussion

Metrics

Chapter 2

Eight Environmental Indicators

Biodiversity

Energy Use

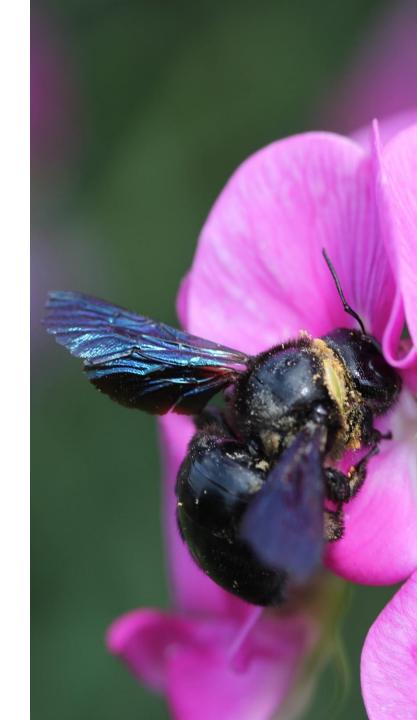
Greenhouse Gases

Irrigation Water Use

Land Use

Soil Carbon

Soil Conservation



Water Quality

www.calculator.fieldtomarket.org

Biodiversity

- Cultivated fields and non-productive areas of the farm all contribute.
- Conserve healthy ecosystems
- Protect pollinators and pest predators
- Preserve wildlife habitat for foraging and nesting

Energy Use

- Variable cost of farmingaffected by diesel and electricity prices
- Combustion of fossil fuels releases greenhouse gas CO₂
- Direct energy operating equipment, pumping irrigation water, grain drying and transport
- Embedded energy required to produce crop inputs (seeds, fertilizers, crop protectants)

Greenhouse Gases

- Hold heat inside the Earth's atmosphere
- Cause the atmosphere to warm
- Weather patterns become more volatile
- Attributed to ag:
 - Carbon Dioxide (CO₂)
 - Nitrous Oxide (N₂O)
 - Methane (CH₄)

Irrigation Water Use

- Finite supply of fresh water
- United States agriculture accounts for 80% of fresh water consumed
- Can be expensive

Land Use

- Efficient use of agricultural land is necessary for farm financial stability
- Best land for agricultural use is already under cultivation in the U.S
- Balance yield with input optimization

Soil Carbon

- From organic matter
- indicator of soil health
- reservoir for plant nutrients and water
- Causes aggregate formation
- Enhancing soil carbon removes carbon dioxide from the atmosphere

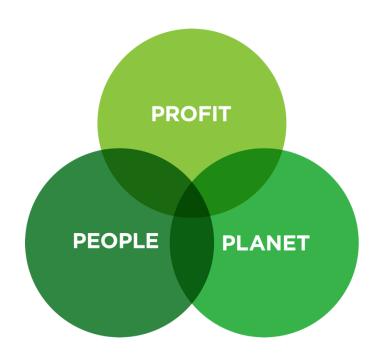
Soil Conservation – Preventing Erosion

Erosion is expensive

- lost soil takes inputs with it
- harms productivity

Sedimentation in waterways

- reduces transportation efficiency
- harms water qualitySoil suspended in air causes
- traffic hazards
- respiratory ailments



Water Quality

- Soil sediment, nutrients and crop protectants leave field and enter water through
 - runoff directly into surface waters
 - leach through the soil profile
 - enter tile lines that discharge to surface water
 - leach into groundwater
- Structural and edge of field practices – last line of defense
- Protect freedom to operate

Social and economic considerations

All three pillars are equally important.

Discussion

Review

- Consumer demand for sustainable products
- Company response to demand
- 8 environmental metrics have been widely agreed upon
- Intersection of environment, economy, and community

Thank you!

Sustainability Programming for Ag Retailers and CCAs (SPARC)

