The Farmer Business Case for Sustainability

Learning Objectives

- Communicate the value of sustainability to customers
- Respond to producer questions about demand
- Highlight examples of successful farmers
- Forecast potential economic benefits

Finding Value in Sustainable Agriculture

- Reduce risk with technical support
- Increase operational efficiency
- Connect to financial assistance programs
- Engage in supply chain sustainability projects
- Protect freedom to operate

Reduce Risk with Technical Support

Reduce Risk With Technical Support

Example: Grower wants to add cover crops to rotation. Guidance needed to:

- Select appropriate seed
- Establishing healthy stands
- Terminate cover crop

Reduce Risk With Technical Support

Other examples

- Reduced tillage
- Variable rate technology
- Irrigation technology

Reduce Risk With Technical Support

You are not alone

- American Society of Agronomy
- Conservation Districts
- NRCS
- Cooperative Extension

Photo courtesy USDA Natural Resource Conservation Service

Discussion

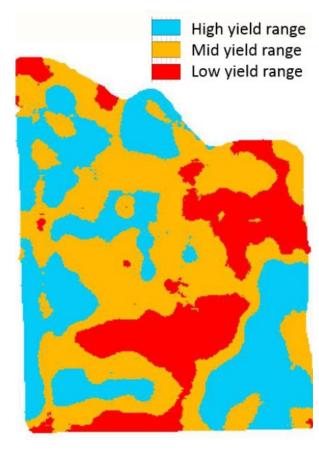
Increase Operational Efficiency: Supporting Research

Chapter 2

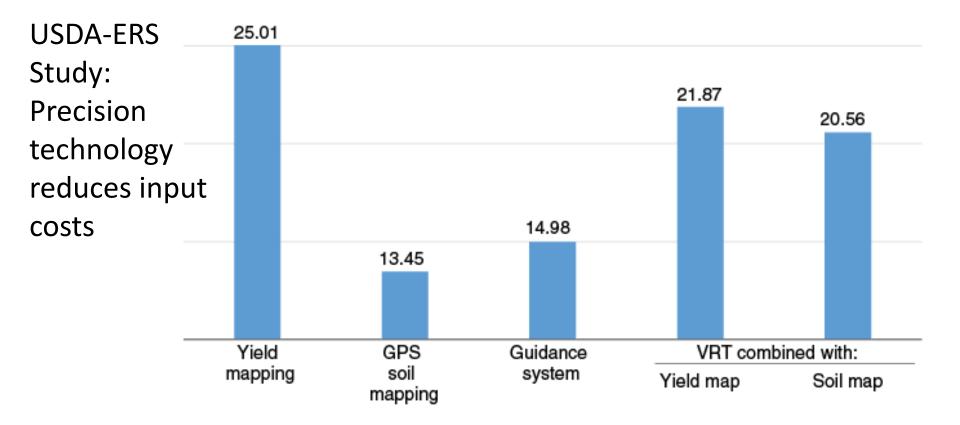
Increasing Operational Efficiency: Supporting Research

Research

Report Number 217


USDA-ERS Study: Precision technology reduces input costs

Farm Profits and Adoption of Precision Agriculture


⁶ David Schimmelpfennig

Most corn and soy growers already use yield monitors.

Increasing Operational Efficiency: Supporting Research

Increasing Operational Efficiency: Supporting Research

Texas A & M Study: Conservation Tillage Reduces Costs and Boosts Yields

No-Till Farming Practices Offer Cost Savings and More Profit Potential to Cotton and Grain Sorghum Producers

> Mac Young Jamie Foster Josh McGinty Steven Klose Andrea Maeda

FARM Assistance Focus 2018-2 March 2018

Department of Agricultural Economics Texas A&M AgriLife Extension Service farmassistance.tamu.edu

Increasing Operational Efficiency: Supporting Research - Texas A & M Study

Table 2: 2018 Conventional and No-Till Cotton and GrainSorghum Production Costs Differences Per Acre

	Cotton (lbs.)		Grain Sorghum (cwt.)	
Expenses	Conventional	No-Till	Conventional	No-Till
	(\$/Acre)	(\$/Acre)	(\$/Acre)	(\$/Acre)
Herbicides (1)	41.24	51.24	35.13	38.26
Insecticides	27.33	27.35	11.15	11.54
Custom (2)	54.48	32.08	69.59	47.24
Harvest (2,3)	155.55	171.36	15.45	16.91
Boll Weevil	4.27	4.70	n/a	n/a
Labor	13.18	7.72	15.07	9.42

(1) Includes defoliants for cotton.

(2) Assumes cotton is custom harvested.

(3) Includes ginning for cotton; hauling and drying for grain sorghum.

Increasing
Operational
Efficiency

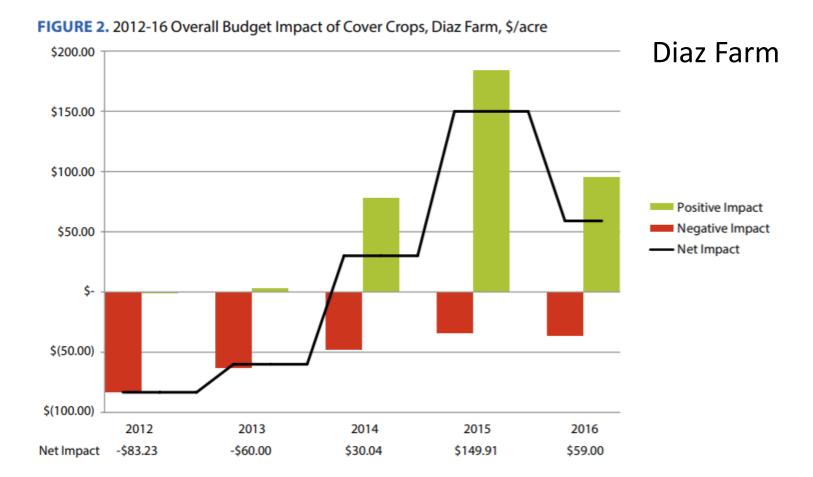
Table 1: Cotton and Grain Sorghum Conventional and No-Till Yields Per Acre, Corpus Christi Research and Extension Center							
Year	Cotton (lbs.)		Grain Sorghum (cwt.)				
	Conventional	No-Till	Conventional	No-Till			
2011	266	277	35.65	36.79			
2012	428	415	26.43	39.49			
2013	22	190	0.00	0.00			
2014	517	565	27.74	34.41			
2015	916	1,058	53.42	48.85			
2016	953	910	51.29	56.48			
2017	1,168	1,286	15.86	47.02			
Average	610	672	34.34	37.58			
Case Study Projected Average Yields							
2018	610	672	34.34	37.58			
2027	640	705	34.87	38.16			

Discussion

Increase Operational Efficiency: Grower Testimonials

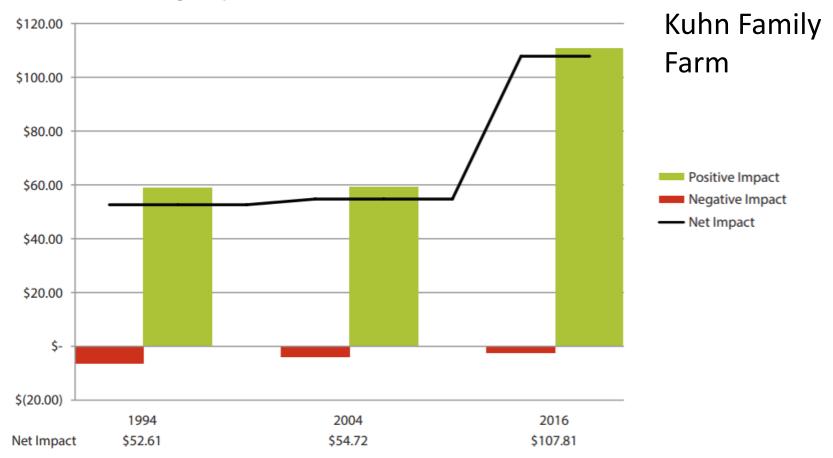
Profiles In Soil Health

Jared Questad, Baltic, SD


Soil Health Partnership: Farmer Dave Moss

Discussion

National Association of Conservation Districts and Datu Research Case Study: Diaz Farm Benefits from No-Till and Cover Crops



National Association of Conservation Districts and Datu Research Case Study: No-Till Makes a Positive Impact on Kuhn's Family Farm

FIGURE 1. Overall Budget Impact of No-till in 1994, 2004, and 2016, K.F. Farm, \$/acre

Discussion

Other Opportunities

Other Opportunities: Financial Assistance and Incentives

USDA-NRCS

- Ag Management
 Assistance Program (AMA)
- Conservation Stewardship Program (CSP)
- Environmental Quality Incentives Program (EQIP)

Other Opportunities: Expanding Market Access

Unilever Sustainable Soy Project

- Iowa farmers eligible for \$10/A, up to 10% total farmed acres
- Remaining 90% eligible for \$5/ cover ADM cropped acre

Other Opportunities: Protect Freedom to Operate

- Protect legacy farms
- Keep growers on the land
- Proactively reduce likelihood of new regulations

Discussion

Review

- Communicate the value of sustainability.
- Respond to grower questions about the demand for sustainably sourced products.
- Point to farmers that have successfully implemented practices that improve sustainability outcomes on their farm.
- Forecast the potential economic benefits to growers of adjusting the farm management system.

Discussion

Thank you!

Sustainability Programming for Ag Retailers and CCAs (SPARC)

